Prüfung von 66 kV Array-Kabeln

Dr. Uwe Kaltenborn studierte Elektrotechnik an der TU Dresden und promovierte an der TU Darmstadt. Nach Stationen bei ABB, Siemens, Areva T&D/Schneider Electric arbeitet er seit 2012 für die Reinhausen Gruppe als Leiter Portfolio- und Technologiemanagement. Seit 2017 verantwortet er bei der HIGHVOLT die Bereiche Business Development sowie Hochspannungstechnik. Hauptfokus seiner Arbeiten sind Isolationssysteme, Schalten von Strömen und die Anwendung von Leistungselektronik im elektrischen Netz. Er ist Mitglied in verschiedenen nationalen und internationalen Normungsgremien, dem wissenschaftlichen Beirat der FGH sowie Vorsitzender des deutschen Komitees CIRED und des wissenschaftlichen Beirats des Leibniz INP Institutes. Er hat an mehr als 50 Fachpublikationen und mehr als 40 Patenten mitgewirkt.


On-site testing of 66 kV subsea array cables for off-shore windfarms

Off-shore windfarms are moving towards higher generation power per wind turbine. To connect the wind turbines in the most efficient way, the voltage level of the connecting array cables is more and more moved to 66 kV. This allows the increase of the power capacitance, leading to an increase of the number of connected wind turbines and therefore the maximum length of the string. Utilizing 66 kV cables offshore, the experience regarding failures and failure mechanisms during installation and operation is limited. To guide manufacturers, test service providers and operators a new standard is under development: IEC 63026. For the practical application two different set of requirements can be defined: the installation of an individual wind turbine and its connection to the wind farm and the connection of a complete string of wind turbines to the collector platform for full operation. To ensure the quality of the cable system, it is important to apply a test voltage in such a way, that potential partial discharges (PD) and therefore potential failures can be detected safely. In a first step the physical background how PD in a cable system can be initiated and measured will be discussed. Based on that background the different methods to generate a suitable test voltage to ensure the dielectric integrity of the cable as well as the sufficient amount of energy to initiate PDs in wrongly mounted cable joints and terminations are compared. As a solution it was found that a resonant test circuit shows the preferred performance to detect PD in cables and cable accessories. The structure of such a test system is explained, especially the necessary adaptations for offshore applications for cable systems with rated voltages up to 66 kV. These adaptations are covering the test circuit as such and also the infrastructure for the transportation, installation and application of the resonant test system. The integration of the PD measurement is one of the key discussion points. Finally, experiences of PD measurements with resonant test circuits are explained and discussed.